10 research outputs found

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≄3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    Further Adventures in Mars DTM Quality; Smoothing Errors, Sharpening Details

    Get PDF
    We have used high-precision, high-resolution digital terrain models (DTMs) of the NASA Mars Science Laboratory and Mars 2020 rover landing sites based on mosaicked images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (MRO HiRISE) camera as a reference data set to evaluate DTMs based on Mars Express High Resolution Stereo Camera (MEX HRSC) images. The Next Generation Automatic Terrain Extraction (NGATE) matcher in the SOCET SET/GXPÂź commercial photogram- metric system produces DTMs with relatively good (small) horizontal resolution but high error, and results are terrain dependent, with poorer resolution and smaller errors on smoother surfaces. Multiple approaches to smoothing the NGATE DTMs give very similar tradeoffs between resolution and error. Smoothing the NGATE DTMs with a 5x5 lowpass filter is near optimal in terms of both combined resolution-error performance and local slope estimation, but smoothing with a single pass of an area-based matcher, which has been the standard approach for generating planetary DTMs at the U.S. Geological Survey to date results in similar errors and only slightly worse resolution. DTMs from the HRSC team processing pipeline fall within this same trade space but are less sensitive to terrain roughness. DTMs produced with the Ames Stereo Pipeline also fall in this space at resolutions intermediate between NGATE and the team pipeline. Although DTM resolution and error each vary by a factor of 2, the product of resolution and error is much more consistent, varying by ≀20% across multiple image sets and matching algorithms. Refinement of the stereo DTM by photoclinometry can yield significant quantitative improvement in resolution and some improvement in error (improving their product by as much as a factor of 2), provided that albedo variations over distances smaller than the stereo DTM resolution are not too severe

    Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    Get PDF
    The Mars Science Laboratory mission aims to land a car-sized rover on Mars’surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and “fly out” deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft’s performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover’s thermal state that are used to plan surface operations

    Selection of the InSight Landing Site

    No full text
    The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (≀−2.5 km for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ∌600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes \u3c15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (\u3c10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ∌5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection

    Selection of the Mars Science Laboratory Landing Site

    No full text

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    No full text
    corecore